one publication added to basket [352512] | Four millennia of long-term individual foraging site fidelity in a highly migratory marine predator
Guiry, E.J.; James, M.; Cheung, C.; Royle, T.C.A. (2022). Four millennia of long-term individual foraging site fidelity in a highly migratory marine predator. Communications Biology 5: 368. https://dx.doi.org/10.1038/s42003-022-03310-2
In: Communications Biology. Nature Portfolio: Berlin. e-ISSN 2399-3642
| |
Trefwoorden |
Phoebastria albatrus (Pallas, 1769) [WoRMS] Marien/Kust |
Auteurs | | Top |
- Guiry, E.J.
- James, M.
- Cheung, C.
- Royle, T.C.A.
|
|
|
Abstract |
Theory and field studies suggest that long-term individual foraging site fidelity (IFSF) may be an important adaptation to competition from increasing population. However, the driving mechanisms and extent of long-term IFSF in wild populations of long-lived, migratory animals has been logistically difficult to study, with only a few confirmed instances. Temporal isotopic datasets can reveal long-term patterns in geographical foraging behaviour. We investigate the isotopic compositions of endangered short-tailed albatross (Phoebastria albatrus) over four millennia leading up to their near-extinction. Although not exhibited by short-tailed albatross today, we show past sub-populations displayed a high-degree of long-term IFSF, focusing on the same locations for hundreds of generations. This is the first large-scale evidence for the deep antiquity of long-term IFSF and suggests that it’s density-driven. Globally, as populations of species like short-tailed albatross continue to recover from overexploitation, potential for resurgence of geographic specialization may increase exposure to localized hazards, requiring closer conservation monitoring. |
|