Overslaan en naar de inhoud gaan

Datasets

[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [207723]
Predicting the effect of a Current Deflecting Wall on harbour siltation
Van Maren, D.S.; Winterwerp, J.C.; Decrop, B.; Wang, Z.B.; Vanlede, J. (2011). Predicting the effect of a Current Deflecting Wall on harbour siltation, in: Le Hir, P. et al. (Ed.) Proceedings of the 9th International Conference on Nearshore and Estuarine Cohesive Sediment Transport Processes (INTERCOH '07), Brest, France, September 25-28, 2007. Continental Shelf Research, 31(10, Suppl.): pp. S182-S198. https://dx.doi.org/10.1016/j.csr.2010.12.005
In: Le Hir, P. et al. (Ed.) (2011). Proceedings of the 9th International Conference on Nearshore and Estuarine Cohesive Sediment Transport Processes (INTERCOH '07), Brest, France, September 25-28, 2007. Continental Shelf Research, 31(10, Suppl.). Elsevier: Amsterdam. 210 pp.
In: Continental Shelf Research. Pergamon Press: Oxford; New York. ISSN 0278-4343; e-ISSN 1873-6955
Peer reviewed article  

Beschikbaar in  Auteurs 
  • VLIZ: Non-open access 297398 [ aanvragen ]
  • Waterbouwkundig Laboratorium: Non-open access 327677 [ aanvragen ]
  • Waterbouwkundig Laboratorium: Congresverslagen L7 [226001]
Documenttype: Congresbijdrage

Trefwoorden
    Anchorages > Harbours
    Numerical models
    Properties > Physical properties > Turbidity
    Sediment transport
    België, Zeeschelde, Haven van Antwerpen, Deurganckdok [Marine Regions]
Author keywords
    Numerical model; Sediment transport; Harbour siltation; Scheldt River; Estuarine turbidity maximum

Auteurs  Top 
  • Van Maren, D.S.
  • Winterwerp, J.C.
  • Decrop, B.
  • Wang, Z.B.
  • Vanlede, J.

Abstract
    A new container dock in the Port of Antwerp, the Deurganckdok, was recently constructed in a location close to the Estuarine Turbidity Maximum (ETM) of the Scheldt River. In order to minimise sedimentation in the new dock, a Current Deflecting Wall (CDW) will be constructed. The aim of this paper is to assess the effect of the CDW on exchange flows and sediment fluxes. Determining this effect requires (1) understanding and reproduction of the sediment dynamics close to the Deurganckdok, and (2) accurate reproduction of the exchange flows between the dock and the Scheldt, and the effect of the CDW thereon. The sediment dynamics close to the Deurganckdok are dominated by a high concentration suspension (near-bed concentrations around 1 g/l) which is advected along the dock by the tidal currents. The sediment concentration is limited by the supply of sediment rather than the flow velocity. Most sediment will temporarily settle from suspension around slack tide. Hence, flood and ebb sediment concentrations are comparable, although the ebb and flood velocities are asymmetric. The peak sediment concentration occurs at the left or right bank of the Scheldt River, depending on the clockwise and counter-clockwise residual cross-channel currents. Exchange flows between the dock and the Scheldt are mainly a combination of horizontal eddies and salinity-driven flows, with velocities around 0.4 m/s. Most sediment enters the dock in a near-bed horizontal eddy, occurring around HW. The main effect of a CDW is a deflection of this sediment patch towards the river, reducing the sediment influx into the dock. The estimated reduction of siltation by the CDW is 18%. Alternative CDW configurations also reduce sedimentation in the dock, but less than computed with the design CDW.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs