Skip to main content

Datasets

[ report an error in this record ]basket (0): add | show Print this page

Benthic synecology in a soft sediment shelf: habitat contrasts and assembly rules of life strategies
Beauchard, O.; Mestdagh, S.; Koop, L.; Ysebaert, T.J.W.; Herman, P.M.J. (2022). Benthic synecology in a soft sediment shelf: habitat contrasts and assembly rules of life strategies. Mar. Ecol. Prog. Ser. 682: 31-50. https://dx.doi.org/10.3354/meps13928
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599
Peer reviewed article  

Available in  Authors 
  • VLIZ: Non-open access 377335 [ request ]
  • NIOZ: NIOZ Open Repository - Accepted Manuscripts 371961 [ download pdf ]
  • NIOZ: NIOZ files 371959

Keyword
    Marine/Coastal
Author keywords
    Benthic macroinvertebrate; Biological trait; Life strategy; Assembly rule; Spatial contingency; Stress; Disturbance; Geomorphology

Authors  Top 
  • Beauchard, O.
  • Mestdagh, S.
  • Koop, L.
  • Ysebaert, T.J.W., more
  • Herman, P.M.J., more

Abstract
    Biological traits of benthic macroinvertebrates from a large area of the North Sea soft sediments were used to explore habitat occupancy within seascapes of contrasting hydrodynamics. The area, the Dutch sector of the North Sea, is mainly composed of 2 habitats: shallow dynamic bottoms of heterogeneous geomorphologies and deep homogeneous muddy bottoms. Higher within-habitat heterogeneity was hypothesized to more specifically select benthic life strategies according to environmental filtering, i.e. through the action of abiotic forces. Functional community patterns were explored through the RLQ method, which relates habitat and trait variables, at different spatial scales of specific seascape heterogeneity, and functional diversity indices were used to shed light on community assembly mechanisms. Locally, 3 associations between habitat characteristics and biological traits were shown to correspond with predictions of life history theories, whereas only 2 emerged when considering all types of seascapes. This spatial scale-dependence was explained by abiotic alternations masked over the larger scale at which all the existing strategies could not be properly disentangled. The relative composition in strategies obeyed specific assembly rules as identified by functional diversity indices. Seascape geomorphology was locally discriminant of functional patterns, and could account for biodiversification, much beyond basic taxonomic counts. Whereas habitats of higher physical stability hosted the taxonomically richest communities, stress or disturbance frequency increased functional variations within communities due to different strategist habitat occupancies. This study proposes a generic mechanism of benthic community structuring in soft sediment shelves.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors