Skip to main content

Datasets

[ report an error in this record ]basket (0): add | show Print this page

Validation of large-scale particle image velocimetry to acquire free-surface flow fields in vegetated rivers
Creëlle, S.; Roldana, R.; Herremans, A.; Meire, D.; Buis, K.; Meire, P.; Van Oyen, T.; De Mulder, T.; Troch, P. (2018). Validation of large-scale particle image velocimetry to acquire free-surface flow fields in vegetated rivers. Journal of Applied Water Engineering and Research 6(3): 171-182. https://dx.doi.org/10.1080/23249676.2016.1251856
In: Journal of Applied Water Engineering and Research. Taylor & Francis: London. ISSN 2324-9676
Peer reviewed article  

Available in  Authors 
    Waterbouwkundig Laboratorium: Non-open access 296820 [ request ]

Keywords
    Flow patterns
    Validation
Author keywords
    Image techniques; Large-scale particle image velocimetry; Field application; Vegetated river

Authors  Top 
  • Creëlle, S.
  • Roldana, R.
  • Herremans, A.
  • Meire, D.
  • Buis, K.
  • Meire, P., more
  • Van Oyen, T.
  • De Mulder, T.
  • Troch, P.

Abstract
    The reliability of large-scale particle image velocimetry (LSPIV) methodology to measure a 2D surface velocity field in a vegetated lowland stream is evaluated. To this end, measurements of the free-surface flow field obtained with LSPIV are compared with measurements with an electromagnetic current meter (ECM) close to the surface at four different locations. The measurements were performed monthly, allowing the evaluation of the LSPIV measurements in relation to different vegetated conditions. The difference observed between the mean velocities measured with ECM and LSPIV remains low in winter, whereas an increase is observed in summer. Inappropriate particle seeding density and unsteadiness of the flow are the main sources of LSPIV reliability reduction. Nonetheless, the seasonal average frequency of reliable LSPIV measurements is 97%, 95% and 78% in winter, spring and summer, respectively. The results illustrate that LSPIV is an inexpensive methodology, which provides high-resolution and reliable data to study the flow-field distribution in vegetated rivers, provided some considerations are taken into account to deal with the added complexity of the vegetation presence and the field conditions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors